ÂÌñÉç

Publications

Sallan MC, Filipsky F, Shi CH, Pontarini E, Terranova-Barberio M, Beattie G, Clear A, Bombardieri M, Yip KY, Calado DP, Cragg MS, James S, Carter M, Okosun J, Gribben JG, Klymenko T, Braun A Immunology

Germinal center (GC) B cells are pivotal in establishing a robust humoral immune response and long-term serological immunity while maintaining antibody self-tolerance. GC B cells rely on autophagy for antigen presentation and homeostatic maintenance. However, these functions, primarily associated with the light zone, cannot explain the spatiotemporal autophagy upregulation in the dark zone of GCs. Here, combining imaging, molecular, and genomic approaches, we defined a functional mechanism controlling chromatin accessibility in GC B cells during their dark zone transition. This mechanism links autophagy and nuclear lamin B1 dynamics with their downstream effects, including somatic hypermutation and antibody affinity maturation. Moreover, the autophagy-lamin B1 axis is highly active in the aberrant ectopic GCs in the salivary glands of Sjögren's disease, defining its role in autoimmunity.

+view abstract The Journal of clinical investigation, PMID: 40397664 01 Jul 2025

Torun A, Zdanowicz A, Miazek-Zapala N, Zapala P, Pradhan B, Jedrzejczyk M, Ciechanowicz A, Pilch Z, Skorzynski M, Słabicki M, Rymkiewicz G, Barankiewicz J, Martines C, Laurenti L, Struga M, Winiarska M, Golab J, Kucia M, Ratajczak MZ, Huczynski A, Calado DP, Efremov DG, Zerrouqi A, Pyrzynska B Immunology

Our investigation uncovers that nanomolar concentrations of salinomycin, monensin, nigericin, and narasin (a group of potassium/ sodium cation carriers) robustly enhance surface expression of CD20 antigen in B-cell-derived tumor cells, including primary malignant cells of chronic lymphocytic leukemia and diffuse large B-cell lymphoma. Experiments in vitro, ex vivo, and animal model reveal a novel approach of combining salinomycin or monensin with therapeutic anti-CD20 monoclonal antibodies or anti-CD20 chimeric antigen receptor T cells, significantly improving non-Hodgkin lymphoma therapy. The results of RNA sequencing, genetic editing, and chemical inhibition delineate the molecular mechanism of CD20 upregulation, at least partially, to the downregulation of MYC, the transcriptional repressor of the MS4A1 gene encoding CD20. Our findings propose the cation carriers as compounds targeting MYC oncogene, which can be combined with anti-CD20 antibodies or adoptive cellular therapies to treat non-Hodgkin lymphoma and mitigate resistance, which frequently depends on the CD20 antigen loss, offering new solutions to improve patient outcomes.

+view abstract Haematologica, PMID: 39704178 01 Jul 2025

Open Access
Nakagawa R, Llorian M, Varsani-Brown S, Chakravarty P, Camarillo JM, Barry D, George R, Blackledge NP, Duddy G, Kelleher NL, Klose RJ, Turner M, Calado DP Immunology

To increase antibody affinity against pathogens, positively selected GC-B cells initiate cell division in the light zone (LZ) of germinal centers (GCs). Among these, higher-affinity clones migrate to the dark zone (DZ) and vigorously proliferate by utilizing energy provided by oxidative phosphorylation (OXPHOS). However, it remains unknown how positively selected GC-B cells adapt their metabolism for cell division in the glycolysis-dominant, cell cycle arrest-inducing, hypoxic LZ microenvironment. Here, we show that microRNA (miR)-155 mediates metabolic reprogramming during positive selection to protect high-affinity clones. Mechanistically, miR-155 regulates H3K36me2 levels in hypoxic conditions by directly repressing the histone lysine demethylase, Kdm2a, whose expression increases in response to hypoxia. The miR-155-Kdm2a interaction is crucial for enhancing OXPHOS through optimizing the expression of vital nuclear mitochondrial genes under hypoxia, thereby preventing excessive production of reactive oxygen species and subsequent apoptosis. Thus, miR-155-mediated epigenetic regulation promotes mitochondrial fitness in high-affinity GC-B cells, ensuring their expansion and consequently affinity maturation.

+view abstract Nature communications, PMID: 39627218 03 Dec 2024

Zhang L, Toboso-Navasa A, Gunawan A, Camara A, Nakagawa R, Finsterbusch K, Chakravarty P, Newman R, Zhang Y, Eilers M, Wack A, Tolar P, Toellner KM, Calado DP Immunology

The transition from immunoglobulin M (IgM) to affinity-matured IgG antibodies is vital for effective humoral immunity. This is facilitated by germinal centers (GCs) through affinity maturation and preferential maintenance of IgG B cells over IgM B cells. However, it is not known whether the positive selection of the different Ig isotypes within GCs is dependent on specific transcriptional mechanisms. Here, we explored IgG1 GC B cell transcription factor dependency using a CRISPR-Cas9 screen and conditional mouse genetics. We found that MIZ1 was specifically required for IgG1 GC B cell survival during positive selection, whereas IgM GC B cells were largely independent. Mechanistically, MIZ1 induced TMBIM4, an ancestral anti-apoptotic protein that regulated inositol trisphosphate receptor (IP3R)-mediated calcium (Ca) mobilization downstream of B cell receptor (BCR) signaling in IgG1 B cells. The MIZ1-TMBIM4 axis prevented mitochondrial dysfunction-induced IgG1 GC cell death caused by excessive Ca accumulation. This study uncovers a unique Ig isotype-specific dependency on a hitherto unidentified mechanism in GC-positive selection.

+view abstract Science immunology, PMID: 38579014 05 Apr 2024

D'Avola A, Legrave N, Tajan M, Chakravarty P, Shearer RL, King HW, Kluckova K, Cheung EC, Clear AJ, Gunawan AS, Zhang L, James LK, MacRae JI, Gribben JG, Calado DP, Vousden KH, Riches JC Immunology

-

+view abstract The Journal of clinical investigation, PMID: 38357928 15 Feb 2024

Griger J, Widholz SA, Jesinghaus M, de Andrade Krätzig N, Lange S, Engleitner T, Montero JJ, Zhigalova E, Öllinger R, Suresh V, Winkler W, Lier S, Baranov O, Trozzo R, Ben Khaled N, Chakraborty S, Yu J, Konukiewitz B, Steiger K, Pfarr N, Rajput A, Sailer D, Keller G, Schirmacher P, Röcken C, Fagerstedt KW, Mayerle J, Schmidt-Supprian M, Schneider G, Weichert W, Calado DP, Sommermann T, Klöppel G, Rajewsky K, Saur D, Rad R Immunology

Gastric neuroendocrine carcinomas (G-NEC) are aggressive malignancies with poorly understood biology and a lack of disease models. Here, we use genome sequencing to characterize the genomic landscapes of human G-NEC and its histologic variants. We identify global and subtype-specific alterations and expose hitherto unappreciated gains of MYC family members in a large part of cases. Genetic engineering and lineage tracing in mice delineate a model of G-NEC evolution, which defines MYC as a critical driver and positions the cancer cell of origin to the neuroendocrine compartment. MYC-driven tumors have pronounced metastatic competence and display defined signaling addictions, as revealed by large-scale genetic and pharmacologic screening of cell lines and organoid resources. We create global maps of G-NEC dependencies, highlight critical vulnerabilities, and validate therapeutic targets, including candidates for clinical drug repurposing. Our study gives comprehensive insights into G-NEC biology.

+view abstract Cancer cell, PMID: 37352862 10 Jul 2023

Apollonio B, Spada F, Petrov N, Cozzetto D, Papazoglou D, Jarvis P, Kannambath S, Terranova-Barberio M, Amini RM, Enblad G, Graham C, Benjamin R, Phillips E, Ellis R, Nuamah R, Saqi M, Calado DP, Rosenquist R, Sutton LA, Salisbury J, Zacharioudakis G, Vardi A, Hagner PR, Gandhi AK, Bacac M, Claus C, Umana P, Jarrett RF, Klein C, Deutsch A, Ramsay AG Immunology

Recent transcriptomic-based analysis of diffuse large B cell lymphoma (DLBCL) has highlighted the clinical relevance of LN fibroblast and tumor-infiltrating lymphocyte (TIL) signatures within the tumor microenvironment (TME). However, the immunomodulatory role of fibroblasts in lymphoma remains unclear. Here, by studying human and mouse DLBCL-LNs, we identified the presence of an aberrantly remodeled fibroblastic reticular cell (FRC) network expressing elevated fibroblast-activated protein (FAP). RNA-Seq analyses revealed that exposure to DLBCL reprogrammed key immunoregulatory pathways in FRCs, including a switch from homeostatic to inflammatory chemokine expression and elevated antigen-presentation molecules. Functional assays showed that DLBCL-activated FRCs (DLBCL-FRCs) hindered optimal TIL and chimeric antigen receptor (CAR) T cell migration. Moreover, DLBCL-FRCs inhibited CD8+ TIL cytotoxicity in an antigen-specific manner. Notably, the interrogation of patient LNs with imaging mass cytometry identified distinct environments differing in their CD8+ TIL-FRC composition and spatial organization that associated with survival outcomes. We further demonstrated the potential to target inhibitory FRCs to rejuvenate interacting TILs. Cotreating organotypic cultures with FAP-targeted immunostimulatory drugs and a bispecific antibody (glofitamab) augmented antilymphoma TIL cytotoxicity. Our study reveals an immunosuppressive role of FRCs in DLBCL, with implications for immune evasion, disease pathogenesis, and optimizing immunotherapy for patients.

+view abstract The Journal of clinical investigation, PMID: 37219943 03 Jul 2023

Flümann R, Hansen J, Pelzer BW, Nieper P, Lohmann T, Kisis I, Riet T, Kohlhas V, Nguyen PH, Peifer M, Abedpour N, Bosco G, Thomas RK, Kochanek M, Knüfer J, Jonigkeit L, Beleggia F, Holzem A, Büttner R, Lohneis P, Meinel J, Ortmann M, Persigehl T, Hallek M, Calado DP, Chmielewski M, Klein S, Göthert JR, Chapuy B, Zevnik B, Wunderlich FT, von Tresckow B, Jachimowicz RD, Melnick AM, Reinhardt HC, Knittel G Immunology

Genomic profiling revealed the identity of at least 5 subtypes of diffuse large B-cell lymphoma (DLBCL), including the MCD/C5 cluster characterized by aberrations in MYD88, BCL2, PRDM1, and/or SPIB. We generated mouse models harboring B cell-specific Prdm1 or Spib aberrations on the background of oncogenic Myd88 and Bcl2 lesions. We deployed whole-exome sequencing, transcriptome, flow-cytometry, and mass cytometry analyses to demonstrate that Prdm1- or Spib-altered lymphomas display molecular features consistent with prememory B cells and light-zone B cells, whereas lymphomas lacking these alterations were enriched for late light-zone and plasmablast-associated gene sets. Consistent with the phenotypic evidence for increased B cell receptor signaling activity in Prdm1-altered lymphomas, we demonstrate that combined BTK/BCL2 inhibition displays therapeutic activity in mice and in five of six relapsed/refractory DLBCL patients. Moreover, Prdm1-altered lymphomas were immunogenic upon transplantation into immuno-competent hosts, displayed an actionable PD-L1 surface expression, and were sensitive to antimurine-CD19-CAR-T cell therapy, in vivo.

+view abstract Blood cancer discovery, PMID: 36346827 06 Jan 2023

Kuczynski EA, Morlino G, Peter A, Coenen-Stass AML, Moss JI, Wali N, Delpuech O, Reddy A, Solanki A, Sinclair C, Calado DP, Carnevalli LS Immunology

Peripheral T-cell lymphoma (PTCL) represents a rare group of heterogeneous diseases in urgent need of effective treatments. A scarcity of disease-relevant preclinical models hinders research advances. Here, we isolated a novel mouse (m)PTCL by serially transplanting a lymphoma from a germinal center B-cell hyperplasia model (Cγ1-Cre Blimp1 ) through immune-competent mice. Lymphoma cells were identified as clonal TCRβ+ T-helper cells expressing T-follicular helper markers. We also observed coincident B-cell activation and development of a de novo B-cell lymphoma in the model, reminiscent of B-cell activation/lymphomagenesis found in human PTCL. Molecular profiling linked the mPTCL to the high-risk "GATA3" subtype of PTCL, showing GATA3 and Th2 gene expression, PI3K/mTOR pathway enrichment, hyperactivated MYC, and genome instability. Exome sequencing identified a human-relevant oncogenic β-catenin mutation possibly involved in T-cell lymphomagenesis. Prolonged treatment responses were achieved in vivo by targeting ATR in the DNA damage response (DDR), a result corroborated in PTCL cell lines. This work provides mechanistic insight into the molecular and immunological drivers of T-cell lymphomagenesis and proposes DDR inhibition as an effective and readily translatable therapy in PTCL.

+view abstract EMBO molecular medicine, PMID: 35510955 08 Jun 2022

Maybury BD, Saavedra-Torres Y, Snoeks TJA, Fitzgibbon J, Calado DP Immunology

Enforced activation of NF-κB signaling can be achieved by constitutive NF-κB-inducing kinases, IKK2 and NIK, or via lymphoma-associated mutants of MYD88, CARD11, and CD79B. In order to model Diffuse Large B Cell Lymphoma (DLBCL) in mice, conditional alleles for these proteins are combined with alleles targeting Cre recombinase expression in mature B cells. However, unopposed NF-κB signaling promotes plasmablast differentiation, and as a consequence the model system must be complemented with further mutations that block differentiation, such as Prdm1/BLIMP1 inactivation or overexpression of BCL6. Here, we describe the currently available tools for DLBCL models in mice and their relative advantages and drawbacks. Furthermore, we describe methods to monitor lymphomagenesis, using ultrasound tomography of the spleen, and the technique of partial splenectomy surgery with recovery. These powerful techniques allow paired comparison of individual lymphoma cases before and after interventions, including therapies, and to study the evolution of lymphoma over time. NF-κB activation also promotes widespread nodal involvement with lymphoma and we describe the post-mortem dissection of major nodal groups.

+view abstract Methods in molecular biology (Clifton, N.J.), PMID: 34236648 2021

Alberts E, Wall I, Calado DP, Grigoriadis A Immunology

Lymph nodes (LNs) are highly organized secondary lymphoid organs, and reflective of immune responses to infection, injuries, or the presence of cancer. Extensive molecular and morphological analyses of immune and stromal features in tumors and LNs of breast cancer patients have revealed novel patterns indicative of disease progression. Within LNs, there are dynamic structures called germinal centers (GCs), that act as the immunological hubs for B cell development and generation of affinity matured memory B and antibody-producing plasma cells. Acting as a bridge between systemic and local immunity, associations are observed between the frequency of GCs within cancer-free LNs, the levels of stromal tumor infiltrating lymphocytes, and cancer progression. Scattered throughout the tumor microenvironment (TME) or aggregated in clusters forming tertiary lymphoid structures (TLS), the occurrence of tumor infiltrating B cells (TIL-Bs) has been linked mostly to superior disease trajectories in solid cancers. Recent TIL-Bs profiling studies have revealed a plethora of different TIL-B populations, their functional roles, and whether they are derived from GC reactions in the LN, and/or locally from GC-like structures within the TME remains to be investigated. However, parallels between the immunogenic nature of LNs as a pre-metastatic niche, TIL-B populations within the TME, and the presence of TLS will help to decipher local and widespread TIL-Bs responses and their influence on cancer progression to the lymphatics. Therapies that enhance TIL-Bs responses in the LN GC and/or in GC-like structures in the TME are thus emerging management strategies for breast and other cancer patients.

+view abstract Frontiers in molecular biosciences, PMID: 34124156 2021

Nakagawa R, Calado DP Immunology

Germinal centers (GCs) are essential sites for the production of high-affinity antibody secreting plasma cells (PCs) and memory-B cells (MBCs), which form the framework of vaccination. Affinity maturation and permissive selection in GCs are key for the production of PCs and MBCs, respectively. For these purposes, GCs positively select "fit" cells in the light zone of the GC and instructs them for one of three known B cell fates: PCs, MBCs and persistent GC-B cells as dark zone entrants. In this review, we provide an overview of the positive selection process and discuss its mechanisms and how B cell fates are instructed.

+view abstract Frontiers in immunology, PMID: 33868314 2021

Nakagawa R, Toboso-Navasa A, Schips M, Young G, Bhaw-Rosun L, Llorian-Sopena M, Chakravarty P, Sesay AK, Kassiotis G, Meyer-Hermann M, Calado DP Immunology

Affinity maturation depends on how efficiently germinal centers (GCs) positively select B cells in the light zone (LZ). Positively selected GC B cells recirculate between LZs and dark zones (DZs) and ultimately differentiate into plasmablasts (PBs) and memory B cells (MBCs). Current understanding of the GC reaction presumes that cMyc-dependent positive selection of LZ B cells is a competitive affinity-dependent process; however, this cannot explain the production of GC-derived lower-affinity MBCs or retention of GC B cells with varied affinities. Here, by combining single-cell/bulk RNA sequencing and flow cytometry, we identified and characterized temporally and functionally distinct positively selected cMyc GC B cell subpopulations. cMyc LZ B cell subpopulations enriched with either higher- or lower-affinity cells diverged soon after permissive positive selection. The former subpopulation contained PB precursors, whereas the latter comprised less proliferative MBC precursors and future DZ entrants. The overall affinity of future DZ entrants was enhanced in the LZ through preferential proliferation of higher-affinity cells. Concurrently, lower-affinity cells were retained in GCs and protected from apoptosis. These findings redefine positive selection as a dynamic process generating three distinct B cell fates and elucidate how positive selection ensures clonal diversity for broad protection.

+view abstract Proceedings of the National Academy of Sciences of the United States of America, PMID: 33419925 12 Jan 2021

Xu AQ, Barbosa RR, Calado DP Immunology

Plasma cells (PCs) are essential for protection from infection, and at the origin of incurable cancers. Current studies do not circumvent the limitations of removing PCs from their microenvironment and confound formation and maintenance. Also, the investigation of PC population dynamics has mostly relied on nucleotide analog incorporation that does not label quiescent cells, a property of most PCs. The main impediment is the lack of tools to perform specific genetic manipulation in vivo. Here we characterize a genetic tool (Jchain) in the mouse that permits first-ever specific genetic manipulation in PCs in vivo, across immunoglobulin isotypes. Using this tool, we found that splenic and bone marrow PC numbers remained constant over-time with the decay in genetically labeled PCs being compensated by unlabeled PCs, supporting homeostatic population turnover in these tissues. The Jchain tool paves the way for an in-depth mechanistic understanding of PC biology and pathology in vivo, in their microenvironment.

+view abstract eLife, PMID: 33136000 02 Nov 2020

Toboso-Navasa A, Gunawan A, Morlino G, Nakagawa R, Taddei A, Damry D, Patel Y, Chakravarty P, Janz M, Kassiotis G, Brink R, Eilers M, Calado DP Immunology

Memory B cells (MBCs) are key for protection from reinfection. However, it is mechanistically unclear how germinal center (GC) B cells differentiate into MBCs. MYC is transiently induced in cells fated for GC expansion and plasma cell (PC) formation, so-called positively selected GC B cells. We found that these cells coexpressed MYC and MIZ1 (MYC-interacting zinc-finger protein 1 [ZBTB17]). MYC and MIZ1 are transcriptional activators; however, they form a transcriptional repressor complex that represses MIZ1 target genes. Mice lacking MYC-MIZ1 complexes displayed impaired cell cycle entry of positively selected GC B cells and reduced GC B cell expansion and PC formation. Notably, absence of MYC-MIZ1 complexes in positively selected GC B cells led to a gene expression profile alike that of MBCs and increased MBC differentiation. Thus, at the GC positive selection stage, MYC-MIZ1 complexes are required for effective GC expansion and PC formation and to restrict MBC differentiation. We propose that MYC and MIZ1 form a module that regulates GC B cell fate.

+view abstract The Journal of experimental medicine, PMID: 32407433 06 Jul 2020

Lionarons DA, Hancock DC, Rana S, East P, Moore C, Murillo MM, Carvalho J, Spencer-Dene B, Herbert E, Stamp G, Damry D, Calado DP, Rosewell I, Fritsch R, Neubig RR, Molina-Arcas M, Downward J Immunology

RAC1 P29 is the third most commonly mutated codon in human cutaneous melanoma, after BRAF V600 and NRAS Q61. Here, we study the role of RAC1 in melanoma development and reveal that RAC1 activates PAK, AKT, and a gene expression program initiated by the SRF/MRTF transcriptional pathway, which results in a melanocytic to mesenchymal phenotypic switch. Mice with ubiquitous expression of RAC1 from the endogenous locus develop lymphoma. When expressed only in melanocytes, RAC1 cooperates with oncogenic BRAF or with NF1-loss to promote tumorigenesis. RAC1 also drives resistance to BRAF inhibitors, which is reversed by SRF/MRTF inhibitors. These findings establish RAC1 as a promoter of melanoma initiation and mediator of therapy resistance, while identifying SRF/MRTF as a potential therapeutic target.

+view abstract Cancer cell, PMID: 31257073 08 Jul 2019

Kallemeijn WW, Lueg GA, Faronato M, Hadavizadeh K, Goya Grocin A, Song OR, Howell M, Calado DP, Tate EW Immunology

On-target, cell-active chemical probes are of fundamental importance in chemical and cell biology, whereas poorly characterized probes often lead to invalid conclusions. Human N-myristoyltransferase (NMT) has attracted increasing interest as target in cancer and infectious diseases. Here we report an in-depth comparison of five compounds widely applied as human NMT inhibitors, using a combination of quantitative whole-proteome N-myristoylation profiling, biochemical enzyme assays, cytotoxicity, in-cell protein synthesis, and cell-cycle assays. We find that N-myristoylation is unaffected by 2-hydroxymyristic acid (100 μM), D-NMAPPD (30 μM), or Tris-DBA palladium (10 μM), with the latter compounds causing cytotoxicity through mechanisms unrelated to NMT. In contrast, drug-like inhibitors IMP-366 (DDD85646) and IMP-1088 delivered complete and specific inhibition of N-myristoylation in a range of cell lines at 1 μM and 100 nM, respectively. This study enables the selection of appropriate on-target probes for future studies and suggests the need for reassessment of previous studies that used off-target compounds.

+view abstract Cell chemical biology, PMID: 31006618 20 Jun 2019

Ottina E, Levy P, Eksmond U, Merkenschlager J, Young GR, Roels J, Stoye JP, Tüting T, Calado DP, Kassiotis G Immunology

Mouse models have been instrumental in establishing fundamental principles of cancer initiation and progression and continue to be invaluable in the discovery and further development of cancer therapies. Nevertheless, important aspects of human disease are imperfectly approximated in mouse models, notably the involvement of endogenous retroviruses (ERVs). Replication-defective ERVs, present in both humans and mice, may affect tumor development and antitumor immunity through mechanisms not involving infection. Here, we revealed an adverse effect of murine ERVs with restored infectivity on the behavior of mouse cancer models. In contrast to human cancer, where infectious ERVs have never been detected, we found that ERV infectivity was frequently restored in transplantable, as well as genetic, mouse cancer models. Such replication-competent, ERV-derived retroviruses were responsible for unusually high expression of retroviral nucleic acids and proteins in mouse cancers. Infectious ERV-derived retroviruses produced by mouse cancer cells could directly infect tumor-infiltrating host immune cells and fundamentally modified the host's immune defenses to cancer, as well as the outcome of immunotherapy. Therefore, infectious retroviruses, variably arising in mouse cancer models, but not in human cancer, have the potential to confound many immunologic studies and should be considered as a variable, if not altogether avoided. .

+view abstract Cancer immunology research, PMID: 30143537 Nov 2018

Lazarus KA, Hadi F, Zambon E, Bach K, Santolla MF, Watson JK, Correia LL, Das M, Ugur R, Pensa S, Becker L, Campos LS, Ladds G, Liu P, Evan GI, McCaughan FM, Le Quesne J, Lee JH, Calado D, Khaled WT Immunology

Patients diagnosed with lung squamous cell carcinoma (LUSC) have limited targeted therapies. We report here the identification and characterisation of BCL11A, as a LUSC oncogene. Analysis of cancer genomics datasets revealed BCL11A to be upregulated in LUSC but not in lung adenocarcinoma (LUAD). Experimentally we demonstrate that non-physiological levels of BCL11A in vitro and in vivo promote squamous-like phenotypes, while its knockdown abolishes xenograft tumour formation. At the molecular level we found that BCL11A is transcriptionally regulated by SOX2 and is required for its oncogenic functions. Furthermore, we show that BCL11A and SOX2 regulate the expression of several transcription factors, including SETD8. We demonstrate that shRNA-mediated or pharmacological inhibition of SETD8 selectively inhibits LUSC growth. Collectively, our study indicates that BCL11A is integral to LUSC pathology and highlights the disruption of the BCL11A-SOX2 transcriptional programme as a novel candidate for drug development.

+view abstract Nature communications, PMID: 30127402 20 Aug 2018

Pyrzynska B, Dwojak M, Zerrouqi A, Morlino G, Zapala P, Miazek N, Zagozdzon A, Bojarczuk K, Bobrowicz M, Siernicka M, Machnicki MM, Gobessi S, Barankiewicz J, Lech-Maranda E, Efremov DG, Juszczynski P, Calado D, Golab J, Winiarska M Immunology

Diminished overall survival rate of non-Hodgkin lymphoma (NHL) patients treated with a combination regimen of rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP) has been recently linked to recurrent somatic mutations activating FOXO1. Despite of the clinical relevance of this finding, the molecular mechanism driving resistance to R-CHOP therapy remains largely unknown. Herein, we investigated the potential role of FOXO1 in the therapeutic efficacy of rituximab, the only targeted therapy included in the R-CHOP regimen. We found CD20 transcription is negatively regulated by FOXO1 in NHL cell lines and in human lymphoma specimens carrying activating mutations of . Furthermore, both the expression of exogenous mutants of and the inhibition of AKT led to FOXO1 activation in lymphoma cells, increased binding to promoter and diminished CD20 expression levels. In contrast, a disruption of FOXO1 with CRISPR/Cas9 genome-editing (sgFOXO1) resulted in CD20 upregulation, improved the cytotoxicity induced by rituximab and the survival of mice with sgFOXO1 tumors. Accordingly, pharmacological inhibition of FOXO1 activity in primary samples upregulated surface CD20 levels. Importantly, FOXO1 was required for the downregulation of CD20 levels by the clinically tested inhibitors of BTK, SYK, PI3K and AKT. Taken together, these results indicate for the first time that the AKT-unresponsive mutants of FOXO1 are important determinant of cell response to rituximab-induced cytotoxicity, and suggest that the genetic status of together with its transcriptional activity need further attention while designing anti-CD20 antibodies based regimens for the therapy of pre-selected lymphomas.

+view abstract Oncoimmunology, PMID: 29721381 2018

Frye M, Taddei A, Dierkes C, Martinez-Corral I, Fielden M, Ortsäter H, Kazenwadel J, Calado DP, Ostergaard P, Salminen M, He L, Harvey NL, Kiefer F, Mäkinen T Immunology

Tissue and vessel wall stiffening alters endothelial cell properties and contributes to vascular dysfunction. However, whether extracellular matrix (ECM) stiffness impacts vascular development is not known. Here we show that matrix stiffness controls lymphatic vascular morphogenesis. Atomic force microscopy measurements in mouse embryos reveal that venous lymphatic endothelial cell (LEC) progenitors experience a decrease in substrate stiffness upon migration out of the cardinal vein, which induces a GATA2-dependent transcriptional program required to form the first lymphatic vessels. Transcriptome analysis shows that LECs grown on a soft matrix exhibit increased GATA2 expression and a GATA2-dependent upregulation of genes involved in cell migration and lymphangiogenesis, including VEGFR3. Analyses of mouse models demonstrate a cell-autonomous function of GATA2 in regulating LEC responsiveness to VEGF-C and in controlling LEC migration and sprouting in vivo. Our study thus uncovers a mechanism by which ECM stiffness dictates the migratory behavior of LECs during early lymphatic development.

+view abstract Nature communications, PMID: 29666442 17 Apr 2018

Morini MF, Giampietro C, Corada M, Pisati F, Lavarone E, Cunha SI, Conze LL, O'Reilly N, Joshi D, Kjaer S, George R, Nye E, Ma A, Jin J, Mitter R, Lupia M, Cavallaro U, Pasini D, Calado DP, Dejana E, Taddei A Immunology

The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumors, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular interendothelial junctions. Expression and clustering of the main endothelial-specific adherens junction protein, VEC (vascular endothelial cadherin), upregulate genes with key roles in endothelial differentiation and stability.

+view abstract Circulation research, PMID: 29233846 19 Jan 2018

Lattke M, Reichel SN, Magnutzki A, Abaei A, Rasche V, Walther P, Calado DP, Ferger B, Wirth T, Baumann B Immunology

Neuroinflammation is associated with a wide range of neurodegenerative disorders, however the specific contribution to individual disease pathogenesis and selective neuronal cell death is not well understood. Inflammatory cerebellar ataxias are neurodegenerative diseases occurring in various autoimmune/inflammatory conditions, e.g. paraneoplastic syndromes. However, how inflammatory insults can cause selective cerebellar neurodegeneration in the context of these diseases remains open, and appropriate animal models are lacking. A key regulator of neuroinflammatory processes is the NF-κB signalling pathway, which is activated by the IκB kinase 2 (IKK2) in response to various pathological conditions. Importantly, its activation is sufficient to initiate neuroinflammation on its own.

+view abstract Molecular neurodegeneration, PMID: 28193238 13 Feb 2017

Coffre M, Benhamou D, Rieß D, Blumenberg L, Snetkova V, Hines MJ, Chakraborty T, Bajwa S, Jensen K, Chong MMW, Getu L, Silverman GJ, Blelloch R, Littman DR, Calado D, Melamed D, Skok JA, Rajewsky K, Koralov SB Immunology

B cell development is a tightly regulated process dependent on sequential rearrangements of immunoglobulin loci that encode the antigen receptor. To elucidate the role of microRNAs (miRNAs) in the orchestration of B cell development, we ablated all miRNAs at the earliest stage of B cell development by conditionally targeting the enzymes critical for RNAi in early B cell precursors. Absence of any one of these enzymes led to a block at the pro- to pre-B cell transition due to increased apoptosis and a failure of pre-B cells to proliferate. Expression of a Bcl2 transgene allowed for partial rescue of B cell development, however, the majority of the rescued B cells had low surface immunoglobulin expression with evidence of ongoing light chain editing. Our analysis revealed that miRNAs are critical for the regulation of the PTEN-AKT-FOXO1 pathway that in turn controls Rag expression during B cell development.

+view abstract Cell reports, PMID: 27880903 22 Nov 2016

Brown PJ, Gascoyne DM, Lyne L, Spearman H, Felce SL, McFadden N, Chakravarty P, Barrans S, Lynham S, Calado DP, Ward M, Banham AH Immunology

Strong FOXP1 protein expression is a poor risk factor in diffuse large B-cell lymphoma and has been linked to an activated B-cell-like subtype, which preferentially expresses short FOXP1 (FOXP1S) proteins. However, both short isoform generation and function are incompletely understood. Here we prove by mass spectrometry and N-terminal antibody staining that FOXP1S proteins in activated B-cell-like diffuse large B-cell lymphoma are N-terminally truncated. Furthermore, a rare strongly FOXP1-expressing population of normal germinal center B cells lacking the N-terminus of the regular long protein (FOXP1L) was identified. Exon-targeted silencing and transcript analyses identified three alternate 5' non-coding exons [FOXP1-Ex6b(s), FOXP1-Ex7b and FOXP1-Ex7c], downstream of at least two predicted promoters, giving rise to FOXP1S proteins. These were differentially controlled by B-cell activation and methylation, conserved in murine lymphoma cells, and significantly correlated with FOXP1S protein expression in primary diffuse large B-cell lymphoma samples. Alternatively spliced isoforms lacking exon 9 (e.g. isoform 3) did not encode FOXP1S, and an alternate long human FOXP1 protein (FOXP1AL) likely generated from a FOXP1-Ex6b(L) transcript was detected. The ratio of FOXP1L:FOXP1S isoforms correlated with differential expression of plasmacytic differentiation markers in U-2932 subpopulations, and altering this ratio was sufficient to modulate CD19 expression in diffuse large B-cell lymphoma cell lines. Thus, the activity of multiple alternate FOXP1 promoters to produce multiple protein isoforms is likely to regulate B-cell maturation.

+view abstract Haematologica, PMID: 27056922 Jul 2016

Sander S, Chu VT, Yasuda T, Franklin A, Graf R, Calado DP, Li S, Imami K, Selbach M, Di Virgilio M, Bullinger L, Rajewsky K Immunology

Phosphatidylinositol 3' OH kinase (PI3K) signaling and FOXO transcription factors play opposing roles at several B cell developmental stages. We show here abundant nuclear FOXO1 expression in the proliferative compartment of the germinal center (GC), its dark zone (DZ), and PI3K activity, downregulating FOXO1, in the light zone (LZ), where cells are selected for further differentiation. In the LZ, however, FOXO1 was expressed in a fraction of cells destined for DZ reentry. Upon FOXO1 ablation or induction of PI3K activity, GCs lost their DZ, owing at least partly to downregulation of the chemokine receptor CXCR4. Although this prevented proper cyclic selection of cells in GCs, somatic hypermutation and proliferation were maintained. Class switch recombination was partly lost due to a failure of switch region targeting by activation-induced deaminase (AID).

+view abstract Immunity, PMID: 26620760 15 Dec 2015

Eswaran J, Sinclair P, Heidenreich O, Irving J, Russell LJ, Hall A, Calado DP, Harrison CJ, Vormoor J Immunology

The B-cell receptor (BCR) and its immature form, the precursor-BCR (pre-BCR), have a central role in the control of B-cell development, which is dependent on a sequence of cell-fate decisions at specific antigen-independent checkpoints. Pre-BCR expression provides the first checkpoint, which controls differentiation of pre-B to immature B-cells in normal haemopoiesis. Pre-BCR signalling regulates and co-ordinates diverse processes within the pre-B cell, including clonal selection, proliferation and subsequent maturation. In B-cell precursor acute lymphoblastic leukaemia (BCP-ALL), B-cell development is arrested at this checkpoint. Moreover, malignant blasts avoid clonal extinction by hijacking pre-BCR signalling in favour of the development of BCP-ALL. Here, we discuss three mechanisms that occur in different subtypes of BCP-ALL: (i) blocking pre-BCR expression; (ii) activating pre-BCR-mediated pro-survival and pro-proliferative signalling, while inhibiting cell cycle arrest and maturation; and (iii) bypassing the pre-BCR checkpoint and activating pro-survival signalling through pre-BCR independent alternative mechanisms. A complete understanding of the BCP-ALL-specific signalling networks will highlight their application in BCP-ALL therapy.

+view abstract Leukemia, PMID: 25943180 Aug 2015

Zhang B, Calado DP, Wang Z, Fröhler S, Köchert K, Qian Y, Koralov SB, Schmidt-Supprian M, Sasaki Y, Unitt C, Rodig S, Chen W, Dalla-Favera R, Alt FW, Pasqualucci L, Rajewsky K Immunology

Diffuse large B cell lymphoma (DLBCL) is a complex disease comprising diverse subtypes and genetic profiles. Possibly because of the prevalence of genetic alterations activating canonical NF-κB activity, a role for oncogenic lesions that activate the alternative NF-κB pathway in DLBCL has remained elusive. Here, we show that deletion/mutation of TRAF3, a negative regulator of the alternative NF-κB pathway, occurs in ∼15% of DLBCLs and that it often coexists with BCL6 translocation, which prevents terminal B cell differentiation. Accordingly, in a mouse model constitutive activation of the alternative NF-κB pathway cooperates with BCL6 deregulation in DLBCL development. This work demonstrates a key oncogenic role for the alternative NF-κB pathway in DLBCL development.

+view abstract Cell reports, PMID: 25921526 05 May 2015

Calado DP, Sasaki Y, Godinho SA, Pellerin A, Köchert K, Sleckman BP, de Alborán IM, Janz M, Rodig S, Rajewsky K Immunology

Germinal centers (GCs) are sites of intense B cell proliferation and are central for T cell-dependent antibody responses. However, the role of c-Myc, a key cell-cycle regulator, in this process has been questioned. Here we identified c-Myc(+) B cell subpopulations in immature and mature GCs and found, by genetic ablation of Myc, that they had indispensable roles in the formation and maintenance of GCs. The identification of these functionally critical cellular subsets has implications for human B cell lymphomagenesis, which originates mostly from GC B cells and frequently involves MYC chromosomal translocations. As these translocations are generally dependent on transcription of the recombining partner loci, the c-Myc(+) GC subpopulations may be at a particularly high risk for malignant transformation.

+view abstract Nature immunology, PMID: 23001146 Nov 2012

Sander S, Calado DP, Srinivasan L, Köchert K, Zhang B, Rosolowski M, Rodig SJ, Holzmann K, Stilgenbauer S, Siebert R, Bullinger L, Rajewsky K Immunology

In Burkitt lymphoma (BL), a germinal center B-cell-derived tumor, the pro-apoptotic properties of c-MYC must be counterbalanced. Predicting that survival signals would be delivered by phosphoinositide-3-kinase (PI3K), a major survival determinant in mature B cells, we indeed found that combining constitutive c-MYC expression and PI3K activity in germinal center B cells of the mouse led to BL-like tumors, which fully phenocopy human BL with regard to histology, surface and other markers, and gene expression profile. The tumors also accumulate tertiary mutational events, some of which are recurrent in the human disease. These results and our finding of recurrent PI3K pathway activation in human BL indicate that deregulated c-MYC and PI3K activity cooperate in BL pathogenesis.

+view abstract Cancer cell, PMID: 22897848 14 Aug 2012

Wesemann DR, Magee JM, Boboila C, Calado DP, Gallagher MP, Portuguese AJ, Manis JP, Zhou X, Recher M, Rajewsky K, Notarangelo LD, Alt FW Immunology

Immunoglobulin heavy chain (IgH) class-switch recombination (CSR) replaces initially expressed Cμ (IgM) constant regions (C(H)) exons with downstream C(H) exons. Stimulation of B cells with anti-CD40 plus interleukin-4 induces CSR from Cμ to Cγ1 (IgG1) and Cε (IgE), the latter of which contributes to the pathogenesis of atopic diseases. Although Cε CSR can occur directly from Cμ, most mature peripheral B cells undergo CSR to Cε indirectly, namely from Cμ to Cγ1, and subsequently to Cε. Physiological mechanisms that influence CSR to Cγ1 versus Cε are incompletely understood. In this study, we report a role for B cell developmental maturity in IgE CSR. Based in part on a novel flow cytometric IgE CSR assay, we show that immature B cells preferentially switch to IgE versus IgG1 through a mechanism involving increased direct CSR from Cμ to Cε. Our findings suggest that IgE dysregulation in certain immunodeficiencies may be related to impaired B cell maturation.

+view abstract The Journal of experimental medicine, PMID: 22143888 19 Dec 2011

Calado DP, Zhang B, Srinivasan L, Sasaki Y, Seagal J, Unitt C, Rodig S, Kutok J, Tarakhovsky A, Schmidt-Supprian M, Rajewsky K Immunology

Diffuse large B cell lymphoma (DLBCL) comprises disease entities with distinct genetic profiles, including germinal center B cell (GCB)-like and activated B cell (ABC)-like DLBCLs. Major differences between these two subtypes include genetic aberrations leading to constitutive NF-κB activation and interference with terminal B cell differentiation through BLIMP1 inactivation, observed in ABC- but not GCB-DLBCL. Using conditional gain-of-function and/or loss-of-function mutagenesis in the mouse, we show that constitutive activation of the canonical NF-κB pathway cooperates with disruption of BLIMP1 in the development of a lymphoma that resembles human ABC-DLBCL. Our work suggests that both NF-κB signaling, as an oncogenic event, and BLIMP1, as a tumor suppressor, play causal roles in the pathogenesis of ABC-DLBCL.

+view abstract Cancer cell, PMID: 21156282 14 Dec 2010

Neves P, Lampropoulou V, Calderon-Gomez E, Roch T, Stervbo U, Shen P, Kühl AA, Loddenkemper C, Haury M, Nedospasov SA, Kaufmann SH, Steinhoff U, Calado DP, Fillatreau S Immunology

The myeloid differentiation primary response gene 88 (Myd88) is critical for protection against pathogens. However, we demonstrate here that MyD88 expression in B cells inhibits resistance of mice to Salmonella typhimurium infection. Selective deficiency of Myd88 in B cells improved control of bacterial replication and prolonged survival of the infected mice. The B cell-mediated suppressive pathway was even more striking after secondary challenge. Upon vaccination, mice lacking Myd88 in B cells became completely resistant against this otherwise lethal infection, whereas control mice were only partially protected. Analysis of immune defenses revealed that MyD88 signaling in B cells suppressed three crucial arms of protective immunity: neutrophils, natural killer cells, and inflammatory T cells. We further show that interleukin-10 is an essential mediator of these inhibitory functions of B cells. Collectively, our data identify a role for MyD88 and B cells in regulation of cellular mechanisms of protective immunity during infection.

+view abstract Immunity, PMID: 21093317 24 Nov 2010

Srinivasan L, Sasaki Y, Calado DP, Zhang B, Paik JH, DePinho RA, Kutok JL, Kearney JF, Otipoby KL, Rajewsky K Immunology

Previous work has shown that mature B cells depend upon survival signals delivered to the cells by their antigen receptor (BCR). To identify the molecular nature of this survival signal, we have developed a genetic approach in which ablation of the BCR is combined with the activation of specific, BCR dependent signaling cascades in mature B cells in vivo. Using this system, we provide evidence that the survival of BCR deficient mature B cells can be rescued by a single signaling pathway downstream of the BCR, namely PI3K signaling, with the FOXO1 transcription factor playing a central role.

+view abstract Cell, PMID: 19879843 30 Oct 2009

Sundrud MS, Koralov SB, Feuerer M, Calado DP, Kozhaya AE, Rhule-Smith A, Lefebvre RE, Unutmaz D, Mazitschek R, Waldner H, Whitman M, Keller T, Rao A Immunology

A central challenge for improving autoimmune therapy is preventing inflammatory pathology without inducing generalized immunosuppression. T helper 17 (TH17) cells, characterized by their production of interleukin-17, have emerged as important and broad mediators of autoimmunity. Here we show that the small molecule halofuginone (HF) selectively inhibits mouse and human TH17 differentiation by activating a cytoprotective signaling pathway, the amino acid starvation response (AAR). Inhibition of TH17 differentiation by HF is rescued by the addition of excess amino acids and is mimicked by AAR activation after selective amino acid depletion. HF also induces the AAR in vivo and protects mice from TH17-associated experimental autoimmune encephalomyelitis. These results indicate that the AAR pathway is a potent and selective regulator of inflammatory T cell differentiation in vivo.

+view abstract Science (New York, N.Y.), PMID: 19498172 05 Jun 2009

Lu LF, Thai TH, Calado DP, Chaudhry A, Kubo M, Tanaka K, Loeb GB, Lee H, Yoshimura A, Rajewsky K, Rudensky AY Immunology

Foxp3(+) regulatory T (Treg) cells limit pathogenic immune responses to self-antigens and foreign antigens. An essential role for microRNA (miRNA) in the maintenance and function of Treg cells, revealed by the Treg cell-specific Dicer ablation, raised a question as to a specific miRNA contribution. We found that Foxp3 controlled the elevated miR155 expression required for maintaining Treg cell proliferative activity and numbers under nonlymphopenic conditions. Moreover, miR155 deficiency in Treg cells resulted in increased suppressor of cytokine signaling 1 (SOCS1) expression accompanied by impaired activation of signal transducer and activator of transcription 5 (STAT5) transcription factor in response to limiting amounts of interleukin-2. Our studies suggest that Foxp3-dependent regulation of miR155 maintains competitive fitness of Treg cell subsets by targeting SOCS1, and they provide experimental support for a proposed role for miRNAs in ensuring the robustness of cellular phenotypes.

+view abstract Immunity, PMID: 19144316 16 Jan 2009

Sasaki Y, Calado DP, Derudder E, Zhang B, Shimizu Y, Mackay F, Nishikawa S, Rajewsky K, Schmidt-Supprian M Immunology

BAFF-R-dependent activation of the alternative NF-kappaB pathway plays an essential role in mature B cell survival. Mutations leading to overexpression of NIK and deletion of the TRAF3 gene are implicated in human multiple myeloma. We show that overexpression of NIK in mouse B lymphocytes amplifies alternative NF-kappaB activation and peripheral B cell numbers in a BAFF-R-dependent manner, whereas uncoupling NIK from TRAF3-mediated control causes maximal p100 processing and dramatic hyperplasia of BAFF-R-independent B cells. NIK controls alternative NF-kappaB signaling by increasing the protein levels of its negative regulator TRAF3 in a dose-dependent fashion. This mechanism keeps NIK protein levels below detection even when they cause B cell hyperplasia, so that contributions of NIK to B cell pathologies can easily be overlooked.

+view abstract Proceedings of the National Academy of Sciences of the United States of America, PMID: 18663224 05 Aug 2008

Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J, Henderson JM, Kutok JL, Rajewsky K Immunology

The genomic region encoding the miR-17-92 microRNA (miRNA) cluster is often amplified in lymphoma and other cancers, and cancer cells carrying this amplification have higher expression of miRNA in this cluster. Retroviral expression of miR-17-92 accelerates c-Myc-induced lymphoma development, but precisely how higher expression of miR-17-92 promotes lymphomagenesis remains unclear. Here we generated mice with higher expression of miR-17-92 in lymphocytes. These mice developed lymphoproliferative disease and autoimmunity and died prematurely. Lymphocytes from these mice showed more proliferation and less activation-induced cell death. The miR-17-92 miRNA suppressed expression of the tumor suppressor PTEN and the proapoptotic protein Bim. This mechanism probably contributed to the lymphoproliferative disease and autoimmunity of miR-17-92-transgenic mice and contributes to lymphoma development in patients with amplifications of the miR-17-92 coding region.

+view abstract Nature immunology, PMID: 18327259 Apr 2008

Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J, Rajewsky N, Bender TP, Rajewsky K Immunology

MiR-150 is a microRNA (miRNA) specifically expressed in mature lymphocytes, but not their progenitors. A top predicted target of miR-150 is c-Myb, a transcription factor controlling multiple steps of lymphocyte development. Combining loss- and gain-of-function gene targeting approaches for miR-150 with conditional and partial ablation of c-Myb, we show that miR-150 indeed controls c-Myb expression in vivo in a dose-dependent manner over a narrow range of miRNA and c-Myb concentrations and that this dramatically affects lymphocyte development and response. Our results identify a key transcription factor as a critical target of a stage-specifically expressed miRNA in lymphocytes and suggest that this and perhaps other miRNAs have evolved to control the expression of just a few critical target proteins in particular cellular contexts.

+view abstract Cell, PMID: 17923094 05 Oct 2007

Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y, Murphy A, Frendewey D, Valenzuela D, Kutok JL, Schmidt-Supprian M, Rajewsky N, Yancopoulos G, Rao A, Rajewsky K Immunology

MicroRNAs are small RNA species involved in biological control at multiple levels. Using genetic deletion and transgenic approaches, we show that the evolutionarily conserved microRNA-155 (miR-155) has an important role in the mammalian immune system, specifically in regulating T helper cell differentiation and the germinal center reaction to produce an optimal T cell-dependent antibody response. miR-155 exerts this control, at least in part, by regulating cytokine production. These results also suggest that individual microRNAs can exert critical control over mammalian differentiation processes in vivo.

+view abstract Science (New York, N.Y.), PMID: 17463289 27 Apr 2007

Paixão T, Carvalho TP, Calado DP, Carneiro J Immunology

Gene expression from both parental alleles is beneficial by masking the effects of deleterious recessive mutations and by reducing the noise in gene expression in diploid organisms. However, a class of genes are expressed preferentially or strictly from a single allele. The selective advantage of avoiding biallelic expression is clear for allelic-excluded antigen receptor and odorant receptor genes, genes undergoing X-chromosome inactivation in females and parental genomic imprinted genes. In contrast, there is no clear biological rationale for the predominant and stochastic monoallelic expression of cytokine genes in the immune system, and the underlying mechanism is elusive and controversial. A clarification of the mechanism of predominant monoallelic expression would be instrumental in better understanding its eventual biological functional. This prompted the development of a quantitative framework that could describe the dynamics of the pattern of allele expression of the IL-10 gene, from which general quantitative insights could be gained. We report that the experimental observations on these patterns of allelic expression cannot be easily reconciled with a simple model of stochastic transcriptional activation, in which the two alleles are, at any time, equally competent for transcription. Instead, these observations call into action a general model of eukaryotic transcriptional regulation according to which the locus competence for transcription is dynamic, involving multiple, cooperative and stochastic modification steps. In this model, the probability that an allele becomes transcriptionally active is a function of the number of chromatin modifications that it accumulated. On the basis of the properties of this model, we argue that predominant monoallelic expression might have had no adaptive role, and may have evolved under indirect selection for low frequency of expressing cells.

+view abstract Immunology and cell biology, PMID: 17438562 Jun 2007

Calado DP, Paixão T, Holmberg D, Haury M Immunology

IL-10 is a potent anti-inflammatory and immunomodulatory cytokine, exerting major effects in the degree and quality of the immune response. Using a newly generated IL-10 reporter mouse model, which easily allows the study of IL-10 expression from each allele in a single cell, we report here for the first time that IL-10 is predominantly monoallelic expressed in CD4+ T cells. Furthermore, we have compelling evidence that this expression pattern is not due to parental imprinting, allelic exclusion, or strong allelic bias. Instead, our results support a stochastic regulation mechanism, in which the probability to initiate allelic transcription depends on the strength of TCR signaling and subsequent capacity to overcome restrictions imposed by chromatin hypoacetylation. In vivo Ag-experienced T cells show a higher basal probability to transcribe IL-10 when compared with naive cells, yet still show mostly monoallelic IL-10 expression. Finally, statistical analysis on allelic expression data shows transcriptional independence between both alleles. We conclude that CD4+ T cells have a low probability for IL-10 allelic activation resulting in a predominantly monoallelic expression pattern, and that IL-10 expression appears to be stochastically regulated by controlling the frequency of expressing cells, rather than absolute protein levels per cell.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 17015721 15 Oct 2006